Aluminum Strip Casting


Aluminum strip casting is a key contributor to weight saving possibilities, particularly in the automotive industry and although strip casting has been established for over 50 years, it continues to increase in popularity.
Casting speeds can be limited by several factors including the type of alloy being cast and the desired sheet thickness required.

In the automotive industry, decreasing weight is one of the most important challenges which needs to be solved and using aluminum alloys instead of the more traditional steels enables a great opportunity to decrease weight substantially of the overall vehicle.

However, sheets of aluminum alloy used for automobile body work are very expensive. Therefore, in order to make use of aluminum alloys cost effective it is necessary to develop a low cost aluminum alloy sheet which can handle the intended application requirements.

The development of continuous casters for aluminum products has been well documented over the past 50 years. Processes are classified according to the thickness that can be produced using either thin slab or strip casting. Thin slab and thin strip casting bypasses the semi-finished product stage, reducing reheating and eliminating a number of rolling steps, thus providing for considerable energy savings and significant improvements in productivity.

Strip casting was commercialized in the early 1950s. Aluminum alloy sheets are mainly produced in a twin roll caster. In this process, the molten metal is introduced between a pair of counter rotating horizontal casting rolls wherein solidification is initiated when the molten metal contacts the rolls. The solid metal shell formed on the roll surface advances toward the point of minimum clearance between the rolls, referred to as the nip. When the metal passes through the nip, solidification is fully completed and the material undergoes deformation as it exits the rolls. Low alloyed aluminum alloys have successfully been strip cast at a thicknesses of ¼ inch at rolling speeds of 4 to 6 feet/min (50 to 70 lbs/hr/in).

Figure 1: Aluminum Strip casting

The casting speed is restricted by the fact that an increase in casting speed will increase centerline segregation in the sheet. In particular, the central zone of the sheet will become enriched with eutectic forming elements (Fe, Si, Ni, Zn) and depleted in peritectic forming elements (Ti, Cr, V, Zr).

Therefore, more highly alloyed materials (e.g. AA5XXX and 6XXX) are more difficult to produce by the strip casting process. Another aspect of the process is that the high separation force required to achieve the desired sheet thickness further limits the casting speed. This is because the aluminum strip is solid when it enters the nip, resulting in a required force of several tons per inch width. Difficulty in achieving uniform heat transfer as rolling speed increases also represents another impediment to increasing process speed. Commercial strip casters can produce strips with thicknesses ranging from 1 to 15 mm.

Figure 2: Microstructures of twin-roll continuous cast aluminum thin strip: (a) Solidified organization on cross section of aluminum strip; (b) Local magnification of (a)


1. H. Sakaguchi, T. Haga, H Watari, S. Kumai: High speed twin roll casting of 6016 aluminium alloy strip, Journal of Achievements in Materials and Manufacturing Engineering, Vol.20, Issue 1-2, January-February 2007, p.495-498;

2. T. Haga, M. Ikawa; H. Watari, K. Suzuki, S. Kumai: High-Speed Twin Roll Casting of Thin Aluminum Alloy Strips Containing Fe Impurities, Materials Transactions, Vol. 46, No. 12, 2005, p. 2596-2601;

3. B. Davis, J. Hryn: Innovative Forming and Fabrication Technologies: New Opportunities, ARGONE, Final Report, 15 Decembre 2007, K. Suzuki, S. Kumai, Y. Saito and T. Haga: High-Speed Twin-Roll Strip Casting of Al–Mg–Si Alloys with High Iron Content, Materials Transactions, Vol. 46, No. 12, 2005, p. 2602- 2608;

4. Horizontal continuous casting in graphite mold, Accessed Sept 2016;

5. Chen Shou-dong, et al.: Simulation of microstructures in solidification of aluminum twin-roll casting, Trans. Nonferrous Met. Soc. China 22, 2012, p.1452−1456;

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위



Total Materia는 다양한 나라와 규격에 따른 수천개의 알루미늄 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '알루미늄'을 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.

선택된 정보에 부합하는 일련의 재질이 검색됩니다.

결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.

자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.