Rapid Slurry Forming (RSF) Technology

요약:

Rapid slurry formation (RSF) is a novel semi-solid metal forming technique which allows complex geometries to be formed in a single operation.
Advantages of RSF include a much reduced suspension preparation time and cost and most importantly the ability to achieve a globular structure and high fluidity of suspension at the same time.

Rapid slurry formation is a semi-solid metal forming technique, which is based on a so-called solid enthalpy exchange material (EEM). It is a fascinating technology offering the opportunity to manufacture net-shaped metal components of complex geometry in a single forming operation.

The RSF process differs from other rheocasting processes because heat extraction and temperature control are not necessary. The RSF process is based on enthalpy exchange of two alloys where one alloy is the low superheat melt (high enthalpy).

The other one acts as the cold solid stirring material (low enthalpy) and is also known as enthalpy exchange material (EEM). During the process the EEM is submerged into the melt while stirring action is applied. Heat is absorbed from the melt during stirring operation, and the two alloys with different enthalpies will form a new alloy system with a new enthalpy level.

RSF technology is able to extract a very large amount of heat through enthalpy exchange of similar material in a very short time. This also improves the castability of the alloy significantly. The reason being that through RSF technology, the morphology of the primary phase changes from coarse dendrites to near globular, which eliminates the feeding problem during solidification that is associated with conventional casting method.

The advantage of the method is that the relatively low solid phase fraction (20-30%) provides for achieving a globular structure with simultaneous retaining the high fluidity of suspension, and the preparation of the suspension is much shorter and cheaper than for other methods.



Figure 1: Schematic diagram of heat exchange during slurry formation in RSF process

Figure 2(a) exhibits the typical as-cast structure of A 357 alloy where highly dendritic α-Al phase is present. Whereas Fig. 2(b-f) show semi-solid structures of A357 alloy at different rpm. One can see change in dendritic morphology of α-Al in semi-solid structure. This improves the castability of the alloy significantly. The reason being that through RSF technology, the morphology of the primary phase changes from coarse dendrites to near globular, which eliminates the feeding problem during solidification that is associated with conventional casting method.



Figure 2: Optical Microstructures of A357 alloy at different rotation speed: (a) 0 rpm, (b) 450 rpm, (c) 800 rpm, (d) 1200 rpm, (e) 1400 rpm and (f) 1800 rpm


References

1. L.Ratke, A.Sharma, D.Kohli: Effect of process parameters on properties of Al-Si alloys cast by Rapid Slurry Formation (RSF) technique, IOP Conf. Series: Materials Science and Engineering 27 (2011) 012068 doi:10.1088/1757-899X/27/1/012068;

2. A.Sharma: Synthesis of semi solid slurry and effect of inoculants on microstructure of A356 alloy cast by rapid slurry forming (rSF) process, La Metallurgia Italiana - n. 4/2013, p.53-58;

3. Z.Konopka, M.Lagiewka, M.Nadolski, A.Zyska: Theoretical analysis of the AlSi10Mg alloy suspension manufacturing by the RSF process, Archives of Metallurgy and Materials, Vol.55, Issue 3, 2010, p.869-873;

4. L.Ratke, A.Sharma, D.Kohli: The RSF Technology for Semi-Solid Casting Processes, Technical Paper, Indian Foundry Journal, Vol.57, No10. October 2011, p.33-36

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 금속학 이미지에 대한 정보를 포함하고 있습니다.

메뉴 표시줄에 특별히 디자인된 금속학 탭을 이용하여, 금속학 데이터가 포함된 관심 재질을 리스트에서 선택하실 수 있습니다.

또한 금속학 데이터는 표준 빠른 검색을 통해 찾을 수 있으며 규격 내 소그룹 페이지를 통해 이용 가능한 관련 자료들이 표시됩니다.

재질명을 '재질'창에 입력하신 후 규격을 알고 계신다면 규격을 선택하고 '검색' 버튼을 클릭합니다.


미세 구조에 대한 일반적인 정보가 관련 관심 재질의 화학 조성과 함께 출력됩니다.


구조의 세부 범위를 보여주는 여러 배율에서의 이미지가 가능하다면 제공됩니다.

다양한 조건을 선택할 수 있으며, '조건 선택' 메뉴를 사용하여 다양한 공정 및 열처리에 따른 금속학 이미지를 보여줍니다.



Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.