Vacuum Brazing: Part One

요약:

Vacuum brazing is categorized as a technique by its protected sealed environment under vacuum and extremely high temperatures greater than 800°C.
The main advantages of using vacuum brazing include achieving high integrity hermetic joints with minimal distortion.

Vacuum Brazing is an advanced high temperature brazing technique which is performed at high temperatures (›800°C) in a protective atmosphere. Other brazing techniques are soft brazing (‹450°C) and hard brazing (450-800°C). Advantage of high temperature brazing compared to soft and/or hard brazing is that a joint is created with higher strength and higher quality, without using fluxing agents. Because of that, no undesired surface reactions will appear and the parts remain very clean and bright after the brazing process. Also the parts, after the high temperature brazing process, can be hardened with almost every hardening technique like carburizing, nitriding, nitrocarburising or vacuum hardening. It is even possible to do the hardening and brazing in one process.

To achieve a good joint using any brazing process the following conditions must be met:
• The part must be properly cleaned prior to brazing
• The parts must be protected, either by fluxing or atmosphere during heating process to prevent oxidation
The parts must be designed to afford capillary attraction (gap clearance, etc.)

Why Vacuum Furnace Brazing?

Vacuum brazing is usually a high temperature (typically 1700°F/927°C - 2250°F/1232°C), flux less process using nickel-base, pure copper and less frequently precious BFM.

There are several advantages to brazing under vacuum conditions:
• The purity level of the atmosphere (vacuum) can be precisely controlled. Atmospheres of much higher purity can be achieved than can be obtained in regular atmosphere furnace, in effect; there is less residual oxygen to contaminate the work piece.
• The vacuum condition at high temperature results in a decomposed oxides layer, and by doing so improves the base metal wetting properties. Improved wetting will result in better joint properties (e.g. increased strength, minimum porosity, etc.)
• Reduced to a minimum distortion because all parts are heated and cooled uniformly at precisely controlled heating/cooling rates.
• Repeatability and reliability of the brazing process in modern vacuum furnaces, ideally suitable for Lean/Agile manufacturing system.

Vacuum Brazing Equipment



Figure 1: Vacuum Brazing Furnace Assembly

Two types of vacuum furnaces are available in the industry depending on material used for construction of hot zone. The choice of hot zone construction (heating elements and insulation) depends on the vacuum level requirement, compatibility with base material and braze filler metals, temperature requirements, and cooling speed.

The Special Benefits of Vacuum Brazing

• Clean and bright parts and assemblies
• Hermetic joints of high integrity
• Metallurgic consistency
• Numerous braze alloys available: nickel, copper, silver, gold, etc.
• Bond strength
• Minimal distortion

Filler Metals for Vacuum Brazing Services

• Nickel alloys
• Silver alloys
• Pure metals
• Copper alloys
• Gold alloys
• Precious metals
• Silver alloys

Application

Vacuum brazing for:
• Fuel Cell Brazing Technology
• Marine applications
• Aircraft applications
• Stainless steel, age harden for the food industry
• Other industry



Figure 2: Vacuum brazing product


References

1. Vacuum Brazing, visited Sept 2012;
2. Janusz Kowalewski, Janusz Szczurek: Issues in Vacuum Brazing, visited Sept 2012;
3. Vacuum Brazing, Clean, Strong, High-Integrity Bonds, visited Sept 2012;
4. Vacuum Brazing Services, visited Sept 2012;
5. Vacuum brazing, visited Sept 2012.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 용접용으로 적합한 다양한 국가와 규격 내 수천개의 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 탄소 등가 데이터와 용접용으로 재질 이용 시 필요한 정보 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '용접 필러 재료'를 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.