The Direct Nickel Process


Using nitric acid as a leaching agent the direct nickel process can treat all types of nickel ore and produces a single flow sheet for a number of final saleable products.
As an atmospheric hydrometallurgical process the direct nickel process has an impressive recycle and return statistic meaning 95%+ of the nitric acid is re-used, therefore providing good environmental incentive.

There are two types of nickel ore deposits; nickel sulphides and oxidic nickel laterites. Three primary processes are used to extract nickel from laterite ore. Conventional pre-concentration techniques are not feasible for nickel laterites as the majority of the nickel is distributed in the iron oxides and clays. This is different from the sulphide ores as the nickel occurs in a discrete mineral. The limonitic ores are processed using acid leaching (hydrometallurgical), the saprolite ores are smelted (pyrometallurgical) and a limonite-saprolite blend can be extracted using the Caron process (pyro/hydrometallurgical).

The Direct Nickel Process DNi is an atmospheric hydrometallurgical processing route designed to treat all types of nickel laterite ores, in a single flow sheet to produce a number of final saleable products. The key to the Process is the use of nitric acid as the leaching agent and the subsequent use of a patented recovery and recycling process returning +95% of the nitric acid for re-use. See below in Figure 1.

The ore is mined and then fed to a comminution plant for crushing to ‹2mm. It is then mixed with the nitric acid to a solids percentage of between 20 and 30% and fed to the leaching tanks heated to 110°C. The residence time in the leaching tanks is between 2-6 hours with 4 hours being typical. During the leaching around half of the mass of the ore is dissolved into the nitric acid, leaving behind the acid insoluble minerals, usually consisting of silicates, and the pregnant leach solution (PLS). The solid-liquid separation of the post-leached slurry occurs in a series of counter current decantation thickeners (CCDs). After the acid insoluble residue has been separated from the leach solution it is washed and filtered prior to disposal in a residue storage facility.

Figure 1: The Direct Nickel Process - Simplified Schematic

Following the CCD circuit the PLS is treated in the iron hydrolysis circuit where the PLS is heated in atmospheric tanks and nitric acid is distilled off for return into the nitric acid recovery system. During this distillation hematite, or Fe2O3, is formed as a solid in the tanks, effectively removing iron and chromium from the liquid. This slurry is filtered and the washed hematite filter cake is produced as a by-product for sale. The iron free solution is then treated with magnesia (MgO) slurry to increase pH and precipitate aluminum hydroxide, which is filtered to produce an Al product.

The low aluminum solution is now ready for mixed hydroxide precipitation where magnesia slurry is again used to raise pH, in a two-stage circuit, and precipitate out the mixed hydroxide product (MHP), containing most of the nickel and cobalt recovered from the feed. The slurry is then thickened to separate the solid MHP as thickener underflow from the barren solution in the thickener overflow. The MHP slurry is then filtered and washed producing MHP filter cake, the primary saleable product from the DNi Process. Alternative commercial products such as nickel and cobalt metal, nickel/cobalt oxide or nickel/cobalt sulphides can be produced with additional modules using existing proven technologies.

Subsequent to mixed hydroxide precipitation, the barren solution, containing primarily magnesium nitrate and water, is evaporated providing clean water for re-use in the Process. The concentrated magnesium nitrate, containing between 2 and 3 moles of water, is fed to a thermal decomposition unit where it is broken down into magnesium oxide (MgO) and nitrogen oxide gases. A small proportion of the MgO is reused in the Process; the remainder is available for sale. The nitrogen oxide gases are recovered through a series of absorption stages where nitric acid is formed, which is then fed back into the leach circuit


1. J.H.Forster: Microwave vacuum carbothermic reduction and sulphidation of a low grade nickeliferous silicate laterite ore, MSc thesis, Queen’s University, Kingston, Ontario, Canada, February, 2015, Accessed Oct 2017;
2. F. McCarthy, G. Brock: Direct Nickel Process – Breakthrough Technology, Processing of Nickel Ores and Concentrates '15, DNi, p.1-10, Accessed Sept 2017

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위



Total Materia는 다양한 나라와 규격에 따른 수천개의 니켈 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '니켈'을 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.

선택된 정보에 부합하는 일련의 재질이 검색됩니다.

결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.

자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.