The Rheo Casting Process


Defects and anomalies are an everyday challenge within the framework of foundry technologies. As demand for castings with very specialized applications rises, the issue of quality becomes more important.
The Rheo Casting process involves using slurry in a semi solid state with the amount of benefits directly linked to the fraction solid at the time of casting. Advantages can include a reduction in shrinkage and significantly reduced latent heat.

Within the framework of foundry technologies the presence of defects, anomalies and imperfections in the final product are an ever present reality. This cohabitation between process and quality issues is becoming more and more problematical because of the request of increased performance in castings, in order to produce a large series of components which often have very critical applications.

Voids or cavities are generated within a casting during solidification, caused by volume contraction, by poor feeding systems and/or gas (prevalently hydrogen) development. Generally, interdendritic shrinkage pores, inclusions, secondary dendrite arm spacing are privileged crack initiation sites, independently of the loading conditions. These parameters directly affect the mechanical performances of the alloy leading to a reduced strength and ductile properties, irregular crack development and in extreme conditions can cause the materials failure.

SSM-processing presents an alternative manufacturing route for aerospace, military and especially automotive components. Suspension parts, engine brackets and fuel rails for the automotive industry are being produced in Europe, whereas examples from the USA include mechanical parts for snowmobiles and mountain bikes. Asia has focused more on the production of electronic components such as electrical housing components and notebook cases with emphasis on magnesium alloys.

Rheocasting involves preparation of SSM slurry directly from the liquid alloy, followed by a forming process such as High Pressure Die Casting (HPDC). With “Rheo” processes the alloy is cooled into a semi-solid state and then is introduced into a die without the presence of an intermediate solidification step; semi-solid slurry with non-dendritic solid particles is produced from a fully liquid regular alloy. It is cooled to obtain the desired fraction solid and then it is cast into a part. Component shaping directly from SSM slurries is inherently attractive due to its characteristics, such as overall efficiency in production and energy management.

A critical advantage of rheocasting is the ability to cast the metal at a wide range of fraction solids. The majority of the process advantages of using nondendritic, semi-solid alloys are dependent on the amount of solid at the time of casting. Reduction of shrinkage, a decreased amount of latent heat, and the magnitude of viscosity are dependent upon and increase of the percentage of solid in the alloy.

However, as the fraction solid increases, semi-solid casting begins to deviate from conventional die casting processes. For the higher fraction solid material, a more powerful shot end is required on the die cast machine because of the much higher viscosity of the alloy. Additionally, the stroke of the piston is usually longer to accommodate the larger opening in the cold chamber. Casting cycle time is therefore shorter with high fraction solid casting, but more costly changes are required for the die casting machine to handle the more viscous material.

The Figures 1 and 2 present the schematic overview of rheo casting process and microstructure of rheocast A356 alloy.

Figure 1: Rheo casting process

Figure 2: Microstructure of rheocast A356 alloy

Search Knowledge Base

Enter a phrase to search for:

Search by

Full text


The Total Materia database contains a large number of metallography images across a large range of countries and standards.

Using the specifically designed Metallography tab in the menu bar, you can select the material of interest to you from the list of materials with metallography data included.

Metallography data can also be found through our standard quick search and will show relevant data is available through the standard Subgroup page for the material of interest.

Simply enter your material designation in to the "Material" field and select the standard of interest if known, then click "Search".

solution img

General information on microstructure can be found along with the relevant chemical composition for the material of interest.

solution img

Where available, a series of images will be provided showing a range of structural detail at various levels of magnification.

It is also possible to select different condition options from the "Select condition" drop-down to show metallography images under different process and heat treatment states.

solution img

solution img

For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.