High Chromium Cast Iron: Part One

요약:

High chromium cast irons (HCCI’s) exhibit very good mechanical properties and offer benefits for a range of manufacturing applications.
With carefully controlled heat treatment the cast iron properties can be further influenced to yield higher strength and ductility depending on the desired application.

High-chromium white iron is an erosion resistant ferrous alloy widely used in manufacturing, it has for long been applied to components in mining and minerals industry due to its excellent abrasion resistance, imparted by the hard alloy eutectic carbides present in the microstructure. Furthermore heat treatment can improve properties, all of interest, depending upon the particular applications.

High-chromium irons have good mechanical properties, high hardness in a cast state, low fluctuation of hardness when properties change. High-chromium irons almost don’t concede in fluidity to regular gray cast iron that allows using parts sufficiently difficult form directly after casting without the following machining.



Table 1: Chemical composition of high-chromium wear resistant irons

The mechanical properties of High chromium cast iron HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the hypereutectic alloy and these will have a negative influence on the wear resistance.

As mentioned above, high chromium cast irons (HCCIs) are mainly used in mining, milling, earth-handling and manufacturing industries which require materials with exceptional wear and corrosion resistance. The exceptional wear resistance of high chromium cast irons is due to the high volume fraction of hard chromium carbides, although the toughness of the matrix also contributes to the wear resistance. The high controlled percentage of chromium helps to retard the formation of graphite and stabilize the carbides.

The article of D. Kopyciński et al. presents results of heat treatment on the high chromium cast iron. The study was carrying out on samples cut from the casting made from chromium cast iron. Those were hardened at different temperatures, then tempered and soft annealed.

Hardness was measured at three points sample, and two at the edges. Figures 1 and 2 show results of hardness after hardening, tempering Vickers and Rockwell method respectively hardness of as-cast sample.

Test results indicate that with proper selection of heat treatment parameters the hardness and composition of phase microstructure of chromium cast iron can be controlled. Hardening affects positively the hardness of castings, whereas tempering and soft annealing improves ductile properties of chromium cast iron. By adjusting the heat treatment parameters, the material properties can be customized for a particular application. The studies let to determinate the optimum heat treatment for this type of cast iron. The best properties were obtained for hardening at 950°C, for other temperature of heat treatments the hardness increased and exceeded 60 HRC units.



Table 2: Heat treatment parameters for individual samples



Figure 1: The Vickers hardness of the samples tempering and soft annealing, and as-cast



Figure 2: The Rockwell hardness of the samples after hardening, tempering and soft annealing, and as-cast


References

1. N. Poolthong, H. Nomura, M. Takita: Effect of Heat Treatment on Microstructure and Properties of Semi-solid Chromium Cast Iron, Materials Transactions, Vol. 45, No. 3, 2004,p. 880- 887;

2. Sv.S.Kvon, V.Y.Kulikov, T.S.Filippova, E.E.Omarova: Using high-chromium iron as material for production of the equipping components of mine shafts, METALURGIJA, METABK 55,(2),2016, p. 206-208, ISSN 0543-5846;

3. Q.Liu: Microstructure evaluation and wear-resistant properties of Ti-alloyed hypereutectic high chromium cast iron, Doctoral Dissertation, Stockholm 2013, ISBN 978-91-7501-842-3;

4. N. Hussain, A. Kumar, P. Vijayanand: Mechanical Property and Microstructural Variation in Semi-Solid Processed High Chromium Cast Iron, International Journal of Engineering Research & Technology (IJERT), Vol. 3 Issue 7, July – 2014, ISSN: 2278-0181;

5. D. Kopyciński, E. Guzik, D. Siekaniec, A. Szczęsny: Analysis of the High Chromium Cast Iron Microstructure after the Heat Treatment, Archives of Foundry Engineering, Volume 14, Issue 3, 2014, p.43-46,ISSN 1897-3310;

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 수천개의 재질에 대한 기계적 특성 테이터가 포함되어 있으며, 데이터를 검토하는 것은 매우 쉽습니다.

데이터베이스는 다양한 특성 정보를 포함하고 있으며, 수 많은 재질의 항복 응력, 인장 응력과 연신율은 데이터를 쉽게 찾을 수 있을 것입니다.

신속 검색에 검색할 재질명을 입력합니다. 원하신다면 국가/규격을 지정하신 후 검색 버튼을 클릭합니다.


Total Materia 데이터베이스에서 검색된 관심 재질의 목록이 즉시 생성됩니다.
관심 재질을 클릭합니다.


소그룹 페이지에서, 선택된 재질의 기계적 특성 링크를 클릭하여 데이터를 검토합니다. 기계적 특성 데이터 기록의 개수는 링크 옆 괄호 안에 표시됩니다.


기계적 특성 데이터는 참조를 위해 선택한 모든 재질 정보와 함께 표시됩니다.

기계적 특성 데이터는 가능한 모든 조건과 처리 상태에 대해 표시됩니다.


또한 한 번의 클릭으로 귀하의 선택에 따라 단위 값을 메트릭(SI)과 앵글로 색슨 단위로 전환할 수도 있습니다.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.