High Chromium Cast Iron: Part Two


High chromium cast irons (HCCI’s) exhibit very good mechanical properties and offer benefits for a range of manufacturing applications.
One of the main flexibilities exhibited is the possibility of HCCI’s to have different matrix structures in different treatment states whether it be austenite in casting state, pearlite in annealing state, martensite in quenching state, and tempered martensite in tempering state.

High chromium white cast irons are an important class of wear resistant materials. Their exceptional wear resistance is the result of their high carbide content, which forms along with austenite during solidification as a pro-eutectic or eutectic phase depending on alloy composition, and particularly depending upon carbon and chromium content.

In general terms, the high chromium iron suitable for wear resisting applications fall within the compositional limits bounded by the austenitic phase field of the ternary liquidus surface of the iron, chromium, carbon diagram. Solidification takes place by a eutectic process The products of the eutectic reaction are austenite and chromium rich carbides of the (FeCr7)C3. For high chromium white iron with a Cr concentration of some 18 - 20 wt% (hypoeutectic composition), solidification starts with the nucleation of dendritic primary austenite (γ), followed by the formation of γ + M7C3 carbide and its morphology have been well documented by several researchers.

The high chromium white iron (HC-Wi) has an austenitic matrix structure at ambient temperature with chromium carbide dispersed within the matrix. The wear resistance of this material is achieved at the surface when the abrasive particle or impact load transforms the unstable Austenite to martensite by strain induced mechanism. This phenomenon of Austenite transformation to martensite causes increased surface hardness and less wear rate loss. Carbon content plays a significant role in chromium carbide formation and its morphology as well as hardness, impact toughness and wear resistance. In this study, the effect of carbon content on the microstructure, mechanical properties and wear characteristics of HC-Wi has been studied and compared to the Hadfield steel.

In the paper G.Yingfeng and J.Zhanpeng, the structure and properties of high chromium white cast iron in different treatment states were studied.

They concluded that:

1. High chromium white cast iron has different matrix structures in different treatment states. There are austenite in casting state, pearlite in annealing state, martensite in quenching state, and tempered martensite in tempering state. All of them contain (Fe,Cr)7C3 type eutectic carbide. In this experimental condition, heat treatment has little effect on the carbide. Except casting sample, all the others contain secondary carbide, and martensite remains in quenching and tempering states.

Figure 1: Metallographic structure of high chromium white cast iron in different treatment states: a-casting state, b-annealing state, c-quenching state, d-tempering state

2. The performance of the high chromium white cast iron changes according to its structure. The comprehensive performance depends on its matrix structure. The sample in annealing state has the lowest macro hardness. The shock tenacity values are high and the tenacity is high in casting and tempering states. Austenite has strong effect in preventing the crack’s expansion and has relatively better elasticity than that of martensite.

3. The shock tenacity and macro hardness of the samples are higher in tempering state than in quenching state. The tempered sample has better comprehensive performance.

4. Tempering at medium temperature (300°C) for a short period (one hour) can improve material’s performance.


1. M.Filipović, Z.Kamberović, M.Korać: Solidification of High Chromium White Cast Iron Alloyed with Vanadium, Materials Transactions, Vol. 52, No. 3, 2011, p. 386- 390;

2. J. O. Agunsoye, T. S. Isaac, A. A. Abiona: On the Comparison of Microstructure Characteristics and Mechanical Properties of High Chromium White Iron with the Hadfield Austenitic Manganese Steel, Journal of Minerals and Materials Characterization and Engineering, 2013, 1, 24-28;

3. G.Yingfeng, J.Zhanpeng: Study on the structure and properties of high chromium white cast iron and its tempering standard, J.Cent.South Univ.Technol., Vol.6, N°1, May 1999, p.8-12.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위



Total Materia는 다양한 나라와 규격에 따른 금속학 이미지에 대한 정보를 포함하고 있습니다.

메뉴 표시줄에 특별히 디자인된 금속학 탭을 이용하여, 금속학 데이터가 포함된 관심 재질을 리스트에서 선택하실 수 있습니다.

또한 금속학 데이터는 표준 빠른 검색을 통해 찾을 수 있으며 규격 내 소그룹 페이지를 통해 이용 가능한 관련 자료들이 표시됩니다.

재질명을 '재질'창에 입력하신 후 규격을 알고 계신다면 규격을 선택하고 '검색' 버튼을 클릭합니다.

미세 구조에 대한 일반적인 정보가 관련 관심 재질의 화학 조성과 함께 출력됩니다.

구조의 세부 범위를 보여주는 여러 배율에서의 이미지가 가능하다면 제공됩니다.

다양한 조건을 선택할 수 있으며, '조건 선택' 메뉴를 사용하여 다양한 공정 및 열처리에 따른 금속학 이미지를 보여줍니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.