The Direct Metal Laser Sintering Process

Sumário:

The DMLS process is an additive melting technology which has been used in many years as a key method for prototyping in medical and aerospace applications.
Because an extremely high level of flexibility DMLS also appears in several other unexpected industries such as automotive, energy, textile industry and many more.

Direct Metal Laser Sintering (DMLS) is an additive laser melting technology that can be used for manufacturing functional metal components and tools in various alloys including light metal alloys, high grade steels, stainless steels and nickel and cobalt based super alloys. The DMLS method has been utilized for many years in prototyping applications in various industries, including medical and aerospace industries.

DMLS means laser-sintering using a metal powder, in which metal parts are produced directly in the building process.

The basic principle of the Direct Metal Laser Sintering (DMLS) Technology is to melt down thin layers (20 ÷ 60 µm) of Metal Powder with an electronically driven LASER beam (200W). Layer by layer, it is possible to build any kind of shape and geometry, even those which are impossible to obtain with any other kind of technology. The accuracy is ± 0.05mm.

In Figure 1 outlines the schematic functioning principle of DMLS.



Figure 1: Schematic functioning principle of DMLS

In the paper of D.Manfredi et al, a characterization of an AlSiMg alloy processed by Direct Metal Laser Sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane.

With respect to a similar aluminum alloy as-fabricated (A360.0 alloy), AlSiMg DMLS specimens show very high values of yield strength of about 40% due to the very fine microstructure.

Tensile tests were performed on an EASYDUR 3MZ—5000 testing machine, with a free-running crosshead speed of 2 mm/min: strain was measured by a piezo-electric extensometer. After rupture, the fracture surfaces were observed by Field emission scanning electron microscopy (FESEM).

In Figure 2a are shown the representative trends of stress-strain curves for each orientation considered. As can be seen, the results are very reproducible. In Figure 2b, it is graphically explained how the yield strength values were calculated: this is shown for a typical stress-strain curve of a sample along the build direction. Considering the tangent to the curve in the elastic region, the values for the Young’s modulus could also be estimated: it was confirmed that they are in good agreement with the results obtained by the impulse excitation technique.



Table 1: Mean values of tensile properties of aluminum alloy DMLS specimens produced according the standard ASTM E8M along different orientations, compared to a similar alloy as-fabricated.



Figure 2: (a) Typical stress-strain curves for aluminum alloy DMLS specimens built long four different orientations; (b) yield strength and Young’s modulus evaluation for the representative curve of a specimen along z axis.

Because of its extremely high flexibility, it is used in many fields of application such as orthopaedics & dental industries, rapid prototyping and tooling. In addition, because of some of its distinctive features, DMLS technology finds unexpected applications in aerospace and automotive industry.



Table 2: Market sectors and applications.


References

1. O.Nyrhila, A.Danzig, M.Frey: Direct Metal Laser Sintering DMLS of Titanium alloys, 2010, p.1-5; Accessed Oct 2016

2. A.R.R.Bineli, A.P.G.Peres, A.L.J.ardini, R.M.Filho: Direct Metal Laser Sintering (DMLS): Technology for design and construction of microreactors, 6º CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 6th Brazilian Conference on manufacturing Enginnering, 11 a 15 de abril de 2011 – Caxias do Sul – RS – Brasil, April 11-15th, 2011, Caxias do Sul – RS – Brazil

3. The DMLS Technology, MET e-manufactoring. iTech Metal, Accessed Oct 2016

4. D. Manfredi, F. Calignano , M. Krishnan, R. Canali, E. Paola Ambrosio, E. Atzeni: From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering, Materials 2013, 6, 856-869; ISSN 1996-1944, doi:10.3390/ma6030856

Procurar conhecimento básico

Colocar uma frase para procurar por:

Procurar por

Texto completo
Palavras chaves

Títulos
Resumo

A Total Materia Extended Range inclui uma coleção única de curvas tensão-deformação e diagramas para os cálculos na faixa de plástico para milhares de ligas de metal, tratamentos térmicos e temperaturas de trabalho. Curvas tensão verdadeira e engenharia são dadas para várias taxas de deformação quando aplicável.

Encontrar um gráfico de tensão-deformação no banco de dados é simples e leva apenas alguns segundos.

Digite o material de interesse no campo de pesquisa rápida. Você pode, opcionalmente, limitar a sua pesquisa, especificando o país / padrão de escolha no campo designado e então, clique em Pesquisar.


Depois de selecionar o material de seu interesse, clique no link diagramas de tensão-deformação para visualizar os dados para o material selecionado. O número de disponíveis diagramas de tensão-deformação é exibido entre parênteses ao lado do link.


Porque as curvas tensão-deformação da Total Materia são neutras em especificações padrão, pode rever tensão-diagramas, clicando no link apropriado para qualquer um dos subgrupos.

Além das curvas de tensão-deformação a diferentes temperaturas, o stress e os dados de deformação são dadas em um formato tabular que é conveniente para a cópia para, por exemplo, um software CAE.


É também possível ver curvas tensão-deformação e dados para outras temperaturas de trabalho.

Para isso, basta inserir uma nova temperatura no 'Enter temperatura' campo dentro do intervalo definido.

Após clicar no botão Calcular, uma nova curva é plotada e valores na tabela agora correspondem com a temperatura que você definiu. Veja o exemplo abaixo de 250°C.


Para você é uma oportunidade de fazer um test drive na Total Materia, nós convidamos você a participar de uma comunidade de mais de 150.000 usuários registrados através da Total Materia Free Trial.