Ultra Low Carbon Bainitic Steels: Part Two


Although one of the most hotly debated microstructure topics, control of bainitic transformation can lead to a range of diversified gains over the mechanical properties of the finished product.
Specific studies of the relationship between cooling rate and finished cooling temperature show interesting findings related to the distribution of granular bainite, martensite-austenite constituent, bainitic ferrite, and polygonal ferrite.

Microstructures of ultra-low carbon bainitic steels are often complex, consisting of mixtures of different ferrite morphologies, and therefore, wide combinations of mechanical properties can be achieved by controlling them. The bainitic transformation is one of the most complex and disputed phase transformations in steels and all microstructures found may not exhibit the typical bainitic type of transformation.

In the work of A.B.Cota and D.B.Santos on HSLA low-carbon bainitic steel containing B was submitted to torsion tests to simulate controlled rolling, followed by interrupted accelerated cooling. The final microstructure was found to contain complex mixture of granular bainite, small islands of martensite-austenite (MA) constituent, bainitic ferrite, and polygonal ferrite.

The combined effects of cooling rate and the finished cooling temperature on the microstructure are illustrated in Figures 1 (LM photomicrographs) and 2 (SEM photomicrographs). It can be seen from Figures 1(a) and 2(a) that the microstructure associated with the highest finish cooling temperature ( TFC = 650°C) exhibits a mixture of fine polygonal ferrite (with a volume fraction < 12%), granular bainite, and small islands of the MA constituent.

The MA constituent has a granular or equiaxed morphology (volume fraction < 4.5% and with islands of average size less than 2 mm). By contrast, the microstructures associated with the next lower finished cooling temperature (TFC= 500°C) [Figs. 1(b) and 2(b)] consist of granular bainite and bainitic ferrite. A small amount of polygonal ferrite is also in evidence in these microstructures.

In the case of the two higher finish cooling temperatures (TFC=650°C and TFC=600°C), the MA islands are distributed practically uniformly throughout the bainite matrix (Figure 3). This figure, a compilation of binary images in which the MA islands appear white, shows that the increase in cooling rate or decrease in finished cooling temperature implies a decrease in the volume fraction and the average size of the MA islands.

Figures 1(c)–(d) and 2(c)–(d) show that, for the lowest finish cooling temperature, TFC = 400°C, the microstructure is essentially bainitic, with fine laths of bainitic ferrite and interlath MA constituent.

Figure 1: Light photomicrographs of samples cooled at different rates and with different finish cooling temperatures: (a) 6.3°C/s, 650°C; (b) 13.3°C/s, 500°C; (c) 6.3°C/s, 400°C; (d) 33°C/s, 400°C.

Figure 2: SEM photomicrographs of samples cooled at different rates and with different finish cooling temperatures: (a) 6.3°C/s, 650°C; (b) 13.3°C/s, 500°C; (c) 6.3°C/s, 400°C; (d) 33°C/s, 400°C.

Figure 3: Binary images of samples cooled at different rates and with different finish cooling temperatures: (a) 6.38C/s, 650°C; (b) 13.0°C/s, 650°C; (c) 33°C/s, 650°C; (d) 6.3°C/s, 500°C; (e) 13.3°C/s, 500°C; (f) 33°C/s, 500°C. LePera’setchant; MA constituent is white.

Search Knowledge Base

Enter a phrase to search for:

Search by

Full text


This article belongs to a series of articles. You can click the links below to read more on this topic.

The Total Materia database contains a large number of metallography images across a large range of countries and standards.

Using the specifically designed Metallography tab in the menu bar, you can select the material of interest to you from the list of materials with metallography data included.

Metallography data can also be found through our standard quick search and will show relevant data is available through the standard Subgroup page for the material of interest.

Simply enter your material designation in to the "Material" field and select the standard of interest if known, then click "Search".

solution img

General information on microstructure can be found along with the relevant chemical composition for the material of interest.

solution img

Where available, a series of images will be provided showing a range of structural detail at various levels of magnification.

It is also possible to select different condition options from the "Select condition" drop-down to show metallography images under different process and heat treatment states.

solution img

solution img

For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.