Hot Torsion Testing: Part One


Hot torsion testing is key in find the interdependence between hot plastic deformation process parameters, and the material structure and properties.
This method has been useful to provide the existence of hot ductility as being dependent on both temperatures and strain rates.

Over 500 million tons of steel production in the world is formed into rolled, forged and other products by means of various technological processes of metal forming where huge amounts of energy need to be employed to master the resistant forces and material stress. The behavior of metals and alloys during hot deformation is a complex issue and alters with the change of process parameters such as: deformation size, deformation rate and temperature. The analysis of hot working conducted with the application of a torsion test using a torsion plastometer allowed the determination of the influence of deformation conditions on plasticity of the steel. The high-temperature plastic working is coupled with dynamic processes of recovery influencing the structure and properties of alloys. One of the crucial issues is finding the interdependence between the hot plastic deformation process parameters, the structure and properties.

The torsion test is one of the most widely used methods for the evaluation of the deformation behavior of metals. Traditionally it is used to provide basic data for the characterization of the mechanical properties of metallic materials under shear. The torsion test provides hot ductility as dependent on temperatures and strain rates.

The hot torsion test is widely used for assessing hotworkability and constitutive behavior of new materials and alloys. One of the disadvantages of the hot torsion test is its non-homogeneity of deformation. It mostly occurs outside the gauge section of the specimen due to a longitudinal gradient in torsional stiffness along the specimen. Therefore, further improvements in the classical solutions and analysis of the test such as method of Fields and Backofen are demanded.

Methods have been proposed to use an effective length of the hot torsion test specimen. Existing methods, however, are only applicable to the materials with monotonic flow curve and therefore are not considered as general tools. Grabianowski and Kurowski presented an experimental method for estimating deformation outside the gauge section. The method is based on the results of a certain stage of deformation and therefore cannot be used to estimate development of the deforming region with deformation.

In an attempt to estimate the degree of longitudinal nonhomogeneous deformation within the hot torsion test specimen and its variations with deformation, a general iterative technique for estimating the effective length of the specimen is presented.

In figures 1, 2 and 3 are represented the drawing of the sample for hot torsion test, the sample during the trial and the hot torsion testing machine, respectively.

Figure 1: Drawing of the sample for hot torsion test

Figure 2: Hot torsion testing machine

Figure 3: Sample during the trial

Search Knowledge Base

Enter a phrase to search for:

Search by

Full text


Heat treatment diagrams are available for a huge number of materials in the Total Materia database.

Heat treatment diagrams covering hardenability, hardness tempering, TTT and CCT can all be found in the standard dataset.

To select materials by special properties, you can use the special search check boxes in the Advanced Search module.

To define the search criteria, all you have to do is select the country/standard of interest to you from the ‘Country/Standard’ pop-up list and to check ‘Heat Treatment Diagram’ box, situated in the Special Search area of the form in the lower part of the Advanced Search page.

Click Submit.

solution img

After selecting the material of interest to you, click on the Heat Treatment link to view data for the selected material. The number of heat treatment records is displayed in brackets next to the link.

solution img

All available heat treatment information will then be displayed for the chosen material.

solution img

solution img

solution img

For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.